Nuprl Lemma : weak-send-do-apply-realizable 11,40

T:Type, t:Tl:IdLnk, ds:x:Id fp Type, f:(State(ds)(T + Top)).
Normal(ds es.weak-send-do-apply(es;T;l;"tg";"a";ds;f
latex


Definitionses.P(es), State(ds), left + right, Top, weakSendDoApplyR{$a:ut2, $tg:ut2}(Ttldsf), xt(x), x.A(x), , Id, "$x", P  Q, x:AB(x), Consistent(R;es), ES, R-Feasible(R), es realizer ind, s = t, Normal(ds), xdom(f). v=f(x  P(x;v), b, x:AB(x), a:A fp B(a), IdLnk, x:A  B(x), Type, t  T, weak-send-do-apply(es;T;l;tg;a;ds;f), s ~ t, {i..j}, #$n, Outcome, *1*, x  dom(f), f(x), False, IdDeq, kind(e), x,yt(x;y), first(e), x:A.B(x), Void, es-realizer(p), x:AB(x), weak-precond-send-realizable2, weak-precond-send-p(es;T;A;l;tg;a;ds;P;f), , A  B, i  j < k, a < b, ||as||, FinProbSpace, EqDecider(T), EOrderAxioms(Epred?info), type List, Msg(M), , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r  s, e < e', P & Q, Knd, kindcase(ka.f(a); l,t.g(l;t) ), constant_function(f;A;B), A, <ab>, loc(e), SWellFounded(R(x;y)), pred!(e;e'), , EState(T), weakPrecondSendR2{$a:ut2, $tg:ut2}(TtpldsPf), suptype(ST), S  T, f(x)?z, can-apply(f;x), do-apply(f;x), True, case b of inl(x) => s(x) | inr(y) => t(y), f(a), tt, ff, Unit, , {x:AB(x)} , if b then t else f fi 
Lemmasbfalse wf, btrue wf, do-apply wf, assert wf, can-apply wf, weakPrecondSendR2 wf, R-sub-self, constant function wf, val-axiom wf, unit-fps wf, length wf nat, weak-precond-send-p wf, es-real wf, es-realizer wf, unit wf, first wf, not wf, EState wf, kindcase wf, Knd wf, rationals wf, bool wf, qle wf, cless wf, nat wf, Msg wf, loc wf, kind wf, EOrderAxioms wf, deq wf, id-deq wf, fpf-cap wf, false wf, true wf, le wf, p-outcome wf, fpf-trivial-subtype-top, fpf-ap wf, fpf-dom wf, weak-precond-send-realizable2, finite-prob-space wf, R-sub-implies, es-real-implies, int seg wf, wps-implies-discrete-wps, R-consistent wf, event system wf, weak-send-do-apply wf, implies-es-real, weakSendDoApplyR feasible, weakSendDoApplyR wf, IdLnk wf, Id wf, fpf wf, top wf, decl-state wf, normal-ds wf

origin